Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.611
1.
J Infect Dev Ctries ; 18(4): 571-578, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38728632

INTRODUCTION: Escherichia coli (E. coli) is the major cause of extraintestinal infections in the urinary tracts and bloodstream in humans in the community and health care institutions. Several studies on the genetic characterization of E. coli among clinical and environmental isolates were performed and revealed a wide diversity of sequence types (STs). In Jordan, phenotypic and genetic features of E. coli were extensively studied but there is still a need to identify the STs that inhabit the community. METHODOLOGY: In this study, multi-locus sequence typing (MLST) was performed on archived clinical E. coli isolates collected from different hospitals in Jordan and the identified STs were extensively analyzed. RESULTS: Genotyping of 92 E. coli isolates revealed 34 STs and 9 clonal complexes. The frequencies of STs ranged between 1 to 23 observations. The most frequent STs among E. coli isolates were ST131 (n = 23), ST69 (n = 19), ST998 (n = 7), ST2083 (n = 5), and ST540 (n = 4). These five ST accounted for up to 60% of the 92 E. coli isolates. Based on the MLST database, the STs reported in this work were world widely recognized in humans, animals, and in the environment. CONCLUSIONS: This study has elaborated more knowledge about the genotypes of E. coli in Jordan, with recommendations for future studies to correlate its genotypes with virulence and resistance genes.


Escherichia coli Infections , Escherichia coli , Genotype , Multilocus Sequence Typing , Jordan/epidemiology , Humans , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/classification , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Genetic Variation , Molecular Epidemiology
2.
Euro Surveill ; 29(18)2024 May.
Article En | MEDLINE | ID: mdl-38699902

BackgroundThe pet industry is expanding worldwide, particularly raw meat-based diets (RMBDs). There are concerns regarding the safety of RMBDs, especially their potential to spread clinically relevant antibiotic-resistant bacteria or zoonotic pathogens.AimWe aimed to investigate whether dog food, including RMBD, commercially available in Portugal can be a source of Salmonella and/or other Enterobacteriaceae strains resistant to last-line antibiotics such as colistin.MethodsFifty-five samples from 25 brands (21 international ones) of various dog food types from 12 suppliers were screened by standard cultural methods between September 2019 and January 2020. Isolates were characterised by phenotypic and genotypic methods, including whole genome sequencing and comparative genomics.ResultsOnly RMBD batches were contaminated, with 10 of 14 containing polyclonal multidrug-resistant (MDR) Escherichia coli and one MDR Salmonella. One turkey-based sample contained MDR Salmonella serotype 1,4,[5],12:i:- ST34/cgST142761 with similarity to human clinical isolates occurring worldwide. This Salmonella exhibited typical antibiotic resistance (bla TEM + strA-strB + sul2 + tet(B)) and metal tolerance profiles (pco + sil + ars) associated with the European epidemic clone. Two samples (turkey/veal) carried globally dispersed MDR E. coli (ST3997-complexST10/cgST95899 and ST297/cgST138377) with colistin resistance (minimum inhibitory concentration: 4 mg/L) and mcr-1 gene on IncX4 plasmids, which were identical to other IncX4 circulating worldwide.ConclusionSome RMBDs from European brands available in Portugal can be a vehicle for clinically relevant MDR Salmonella and pathogenic E. coli clones carrying genes encoding resistance to the last-line antibiotic colistin. Proactive actions within the One Health context, spanning regulatory, pet-food industry and consumer levels, are needed to mitigate these public health risks.


Anti-Bacterial Agents , Escherichia coli , Meat , Salmonella , Animals , Salmonella/isolation & purification , Salmonella/genetics , Salmonella/drug effects , Humans , Portugal , Escherichia coli/isolation & purification , Escherichia coli/genetics , Escherichia coli/drug effects , Dogs , Anti-Bacterial Agents/pharmacology , Meat/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Pets/microbiology , Whole Genome Sequencing , Food Microbiology , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Colistin/pharmacology , Animal Feed/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology
3.
MMWR Morb Mortal Wkly Rep ; 73(18): 411-416, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722798

During July-September 2023, an outbreak of Shiga toxin-producing Escherichia coli O157:H7 illness among children in city A, Utah, caused 13 confirmed illnesses; seven patients were hospitalized, including two with hemolytic uremic syndrome. Local, state, and federal public health partners investigating the outbreak linked the illnesses to untreated, pressurized, municipal irrigation water (UPMIW) exposure in city A; 12 of 13 ill children reported playing in or drinking UPMIW. Clinical isolates were genetically highly related to one another and to environmental isolates from multiple locations within city A's UPMIW system. Microbial source tracking, a method to indicate possible contamination sources, identified birds and ruminants as potential sources of fecal contamination of UPMIW. Public health and city A officials issued multiple press releases regarding the outbreak reminding residents that UPMIW is not intended for drinking or recreation. Public education and UPMIW management and operations interventions, including assessing and mitigating potential contamination sources, covering UPMIW sources and reservoirs, indicating UPMIW lines and spigots with a designated color, and providing conspicuous signage to communicate risk and intended use might help prevent future UPMIW-associated illnesses.


Disease Outbreaks , Escherichia coli Infections , Escherichia coli O157 , Humans , Utah/epidemiology , Child, Preschool , Escherichia coli O157/isolation & purification , Child , Female , Male , Escherichia coli Infections/epidemiology , Infant , Adolescent , Agricultural Irrigation , Water Microbiology , Shiga-Toxigenic Escherichia coli/isolation & purification
4.
Sci Rep ; 14(1): 8816, 2024 04 16.
Article En | MEDLINE | ID: mdl-38627472

The diagnostic assays currently used to detect Shigella spp. (Shigella) and enterotoxigenic Escherichia coli (ETEC) are complex or elaborate which make them difficult to apply in resource poor settings where these diseases are endemic. The simple and rapid nucleic acid amplification-based assay "Rapid LAMP-based Diagnostic Test (RLDT)" was evaluated to detect Shigella spp (Shigella) and enterotoxigenic Escherichia coli (ETEC) and determine the epidemiology of these pathogens in Kolkata, India. Stool samples (n = 405) from children under five years old with diarrhea seeking care at the hospitals were tested, and 85(21%) and 68(17%) by RLDT, 91(23%) and 58(14%) by quantitative PCR (qPCR) and 35(9%) and 15(4%) by culture, were positive for Shigella and ETEC, respectively. The RLDT showed almost perfect agreement with qPCR, Kappa 0.96 and 0.89; sensitivity 93% and 98%; specificity 100% and 97% for Shigella and ETEC, respectively. While RLDT detected additional 12% Shigella and 13% ETEC than culture, all culture positives for Shigella and ETEC except one each were also positive by the RLDT, sensitivity 97% and 93% respectively. RLDT is a simple, sensitive, and rapid assay that could be implemented with minimum training in the endemic regions to strengthen the disease surveillance system and rapid outbreak detection.


Enterotoxigenic Escherichia coli , Escherichia coli Infections , Shigella , Child , Humans , Child, Preschool , Enterotoxigenic Escherichia coli/genetics , Escherichia coli Infections/diagnosis , Escherichia coli Infections/epidemiology , Rapid Diagnostic Tests , Shigella/genetics , Diarrhea/diagnosis , Diarrhea/epidemiology
5.
Food Microbiol ; 121: 104508, 2024 Aug.
Article En | MEDLINE | ID: mdl-38637072

Diarrheagenic E. coli (DEC) can cause severe diarrhea and is a public health concern worldwide. Cattle are an important reservoir for this group of pathogens, and once introduced into the abattoir environment, these microorganisms can contaminate consumer products. This study aimed to characterize the distribution of DEC [Shiga toxin-producing E. coli (STEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), and enteroaggregative E. coli (EAEC)] from extensive and intensive cattle production systems in Brazil. Samples (n = 919) were collected from animal feces (n = 200), carcasses (n = 600), meat cuts (n = 90), employee feces (n = 9), and slaughterhouse water (n = 20). Virulence genes were detected by PCR in 10% of animal samples (94/919), with STEC (n = 81) as the higher prevalence, followed by EIEC (n = 8), and lastly EPEC (n = 5). Animals raised in an extensive system had a higher prevalence of STEC (average 48%, sd = 2.04) when compared to animals raised in an intensive system (23%, sd = 1.95) (Chi-square test, P < 0.001). From these animals, most STEC isolates only harbored stx2 (58%), and 7% were STEC LEE-positive isolates that were further identified as O157:H7. This study provides further evidence that cattle are potential sources of DEC, especially STEC, and that potentially pathogenic E. coli isolates are widely distributed in feces and carcasses during the slaughter process.


Enteropathogenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Cattle , Animals , Escherichia coli Proteins/genetics , Brazil/epidemiology , Serotyping , Enteropathogenic Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Feces
6.
J Water Health ; 22(3): 572-583, 2024 Mar.
Article En | MEDLINE | ID: mdl-38557572

Beta-lactamase-producing Enterobacterales bacteria cause severe hard-to-treat infections. Currently, they are spreading beyond hospitals and becoming a serious global health concern. This study investigated the prevalence and molecular characterization of extended-spectrum ß-lactamase and AmpC-type ß-lactamase-producing Enterobacterales (ESBL-PE, AmpC-PE) in wastewater from livestock and poultry slaughterhouses in Ardabil, Iran. A total of 80 Enterobacterales bacteria belonging to 9 species were identified. Among the isolates, Escherichia coli (n = 21/80; 26.2%) and Citrobacter spp. (n = 18/80; 22.5%) exhibited the highest frequency. Overall, 18.7% (n = 15/80) and 2.5% (n = 2/80) of Enterobacterales were found to be ESBL and AmpC producers, respectively. The most common ESBL producer isolates were E. coli (n = 9/21; 42.8%) and Klebsiella pneumoniae (n = 6/7; 85.7%). All AmpC-PE isolates belonged to E. coli strains (n = 2/21; 9.5%). In this study, 80% of ESBL-PE and 100% of AmpC-PE isolates were recovered from poultry slaughterhouse wastewater. All ESBL-PE and AmpC-PE isolates were multidrug-resistant. In total, 93.3% of ESBL-PE isolates harbored the blaCTX-M gene, with the blaCTX-M-15 being the most common subgroup. The emergence of ESBL-PE and AmpC-PE in wastewater of food-producing animals allows for zoonotic transmission to humans through contaminated food products and contaminations of the environment.


Escherichia coli Infections , Escherichia coli , Animals , Humans , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Poultry/microbiology , Abattoirs , Livestock , Wastewater , Prevalence , Iran , Anti-Bacterial Agents , beta-Lactamases/genetics , Bacterial Proteins/genetics , Bacteria
7.
PLoS One ; 19(4): e0300596, 2024.
Article En | MEDLINE | ID: mdl-38578750

INTRODUCTION: Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae are pathogens of significant public health interest for which new antibiotics are urgently needed. AIM: To determine the prevalence of ESBLs in E. coli and K. pneumoniae isolates from patients attending the Tamale Teaching Hospital (TTH) in Ghana. METHODOLOGY: The study was a cross-sectional study involving convenience sampling of E. coli and K. pneumoniae isolates from consenting patients' clinical specimens, between April and June 2015. Antimicrobial susceptibility test was performed, and ESBL-producer phenotypes were further screened for BlaTEM, BlaSHV, and BlaCTX-M genes. Patients' clinical data were additionally collected using a structured questionnaire. RESULTS: Of the 150 non-duplicate E. coli and K. pneumoniae isolates identified, 140 were confirmed as E. coli (84%, n = 117) and K. pneumoniae (16%, n = 23). Of these, sixty-two (44%) [E. coli (84%; n = 52); K. pneumoniae (16%; n = 10)] phenotypically expressed ESBLs. The proportion of ESBL-producing isolates was higher in adults (15-65 years) than in neonates (< 28 days) (p = 0.14). Most of the isolates showed a high percentage resistance to ampicillin (96%) and tetracycline (89%), but a relatively lower resistance to amikacin (36%). No isolate was resistant to meropenem. More ESBL producers were multidrug resistant compared to non-ESBL-producers [23% (14/62) versus 18% (14/78); p = 0.573]. Overall, 74% (n = 46) of the ESBL genotypes expressed BlaCTX-M-1 genes, followed by 63% (n = 39) BlaTEM, and 16% (n = 10) BlaSHV. The study showed a high prevalence of ESBL-positive E. coli and K. pneumoniae, mostly CTX-M-1 producers at TTH. CONCLUSION: Routine laboratory ESBL screening is warranted to inform patient management.


Escherichia coli Infections , Klebsiella Infections , Adult , Infant, Newborn , Humans , Escherichia coli/genetics , Klebsiella pneumoniae/genetics , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Escherichia coli Infections/genetics , Cross-Sectional Studies , Ghana/epidemiology , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella Infections/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Hospitals, Teaching , Microbial Sensitivity Tests
8.
Mol Biol Rep ; 51(1): 494, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38581525

BACKGROUND: Escherichia coli (E. coli) serves as a common indicator of gut microbiota and is utilized for monitoring antimicrobial resistance determinants in food-producing animals. This study aimed to investigate antimicrobial resistance patterns in virulence gene-positive E. coli isolates obtained from 340 healthy and diarrheic calves. METHODS AND RESULTS: A total of 340 fecal swab samples were obtained from diarrheic (n = 170) and healthy (n = 170) calves for 12 months from different farms in Kerman, Iran. The samples were phenotypically analyzed to detect E. coli isolates and antibiotic resistance. Also, antimicrobial resistance genes, diarrheagenic E. coli pathotypes, and phylogenetic background were screened by PCR. Fifteen percent (51/340) of E. coli isolates were positive for at least one of the examined virulence genes (VGs); the prevalence of VGs in E. coli isolates from healthy calves (36/170; 21.17%) was higher than that in diarrheic cases (15/170; 8.82%). Out of the 51 VG-positive isolates, six pathotypes including Shiga toxin-producing E. coli (STEC; 27.45%), enterotoxigenic E. coli (ETEC; 23.52%), enterohemorrhagic E. coli (EHEC; 19.6%), necrotoxigenic E. coli (NTEC; 19.6%), enteropathogenic E. coli (EPEC; 15.68%), enteroinvasive E. coli (EIEC; 1.96%) and three hybrid pathotypes including ETEC/STEC, ETEC/EHEC, and STEC/EIEC were detected among the strains. Antimicrobial resistance (AR) was observed in 98.03% of the VG-positive isolates, which was the same for both healthy and diarrheic calves. The maximum prevalence rate of AR was found against trimethoprim/sulfamethoxazole (49.01%; 3/51), while the minimum prevalence rate was against gentamycin (5.88%; 25/51). Among the VG-positives, phylotype A was found to be the most prevalent followed by B1 and D phylotypes. CONCLUSIONS: The prevalence of VG-positive E. coli isolates was higher in healthy calves compared to diarrheic cases. AR was widespread among VG-positive isolates. These findings suggest that calves may serve as potential reservoirs of antimicrobial-resistant hybrid pathotypes of E. coli.


Anti-Infective Agents , Enteropathogenic Escherichia coli , Escherichia coli Infections , Humans , Animals , Cattle , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Iran/epidemiology , Phylogeny , Drug Resistance, Microbial , Diarrhea/epidemiology , Diarrhea/veterinary
9.
Surg Infect (Larchmt) ; 25(3): 247-252, 2024 Apr.
Article En | MEDLINE | ID: mdl-38588519

Background: The prevalence of community-onset infections of extended spectrum ß-lactamase (ESBL)-producing strains has increased globally, yet surveillance and resistance in patients with oral and maxillofacial surgery site infections is less investigated. Patients and Methods: A retrospective cohort study was performed to investigate risk factors and resistance of ESBL-producing Escherichia coli (ESBL-EC) and ESBL-producing Klebsiella pneumonia (ESBL-KP) among community-onset patients with oral and maxillofacial surgery during January 2010 to December 2016. Demographic features, predisposing factors, clinical outcomes, and antibiotic agent costs were analyzed. Antimicrobial susceptibility testing of nine antimicrobial agents against ESBL-KP and ESBL-EC were measured. Results: Among 2,183 cultures from infection sites in patients with oral and maxillofacial surgery site (45 cases [2.06%]) were confirmed with community-onset ESBL-KP (24; 1.10%) or ESBL-EC (21; 0.96%) infection. Multivariable analysis showed the independent risk factors for ESBL-producing bacterial infection were prior history of hospitalization (adjusted odds ratio [aOR], 10.984; 95% confidence interval [CI], 5.965-59.879; p = 0.025) and malignant condition (aOR, 3.373; 95% CI 2.947-7.634; p = 0.024). Based on antimicrobial susceptibility testing, 57.8% ESBL-KP and ESBL-EC were found receiving inappropriate antimicrobial therapy, and antibiotic agent costs were higher than non-ESBL-producing bacterial infections ($493.8 ± $367.3 vs. $304.1 ± $334.7; p = 0.031). Conclusions: Infections caused by ESBL-KP and ESBL-EC among patients in sites with oral and maxillofacial surgery are associated with prior history of hospitalization and malignant conditions. Prompt detection and appropriate antibiotic administration for community-onset infections of ESBLs are necessary for such populations.


Escherichia coli Infections , Klebsiella Infections , Pneumonia , Humans , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Retrospective Studies , beta-Lactamases , Escherichia coli , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Risk Factors , Klebsiella , Surgical Wound Infection/drug therapy , Surgical Wound Infection/epidemiology
10.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38653718

The poultry industry is a very important agricultural and industrial sector in Tunisia and Nigeria, with little information about occurrence of diarrheagenic Escherichia coli in the farmers and chickens. This study aimed to detect the prevalence of diarrheal E. coli in humans and poultry and to investigate plasmid-mediated quinolone resistance (PMQR) genes in both countries. Seventy-four isolates of E. coli were studied; nine different virulence genes were screened by PCR. Serotyping was performed only for pathotypes as well as the determining of antibiotic resistance profiles against 21 antibiotics. PMQR genes were investigated by PCR. EAEC was the most abundant pathotype (37/74; 50%) in human and chicken isolates, whereas single EHEC and EPEC (1/74, 1.35%) pathotypes were detected in Tunisia and Nigeria, respectively. About 17 (45.95%) quinolones/fluoroquinolones-resistant isolates were detected, from which the following PMQR genes were detected: aac(6')-Ib-cr (8/17, 47.05%), qepA (6/17, 35.29%), qnrA + qnrB (2/17, 11.76%), and qnrS gene (1/17, 5.88%). Our findings highlight high occurrence of EAEC pathotype in Tunisia and Nigeria, more frequent than EPEC and EHEC. Additionally, all E. coli pathotypes isolated from different sources (humans, poultry) showed resistance to several antibiotics, which are in use as therapeutic choices in Tunisia and Nigeria.


Anti-Bacterial Agents , Chickens , Escherichia coli Infections , Escherichia coli , Plasmids , Poultry Diseases , Quinolones , Animals , Chickens/microbiology , Quinolones/pharmacology , Tunisia , Nigeria , Plasmids/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Humans , Diarrhea/microbiology , Diarrhea/veterinary , Drug Resistance, Bacterial/genetics , Farmers , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Virulence Factors/genetics
11.
Malays J Pathol ; 46(1): 79-89, 2024 Apr.
Article En | MEDLINE | ID: mdl-38682847

INTRODUCTION: Beta-lactamase producing bacterial infection has been on surge due to selection pressure and injudicious antibiotics usage. Organisms that co-produced more than one beta lactamase enzyme posed diagnostic challenges which may result in inadequate treatment. To date, there is no standardised guideline offering phenotypic detection of AmpC ß-lactamase. The purpose of this study was to determine the prevalence of ESBLs, AmpC ß-lactamase and co-producer organisms in a teaching hospital. MATERIALS AND METHODS: Three hundred and four isolates of E. coli and Klebsiella sp. had been selected via convenient sampling. These isolates were identified using conventional laboratory methods and their antimicrobial susceptibilities were determined using disc diffusion method. Those isolates were then proceeded with ESBL confirmatory test, cloxacillin-containing Muller Hinton confirmatory test, modified double disk synergy test and AmpC disk test. RESULTS: Out of 304 isolates, 159 isolates were E. coli and 145 were Klebsiella sp. The prevalence of organisms which co-produced AmpC ß-lactamase and ESBL enzymes were 3.0%. Besides that, 39 cefoxitin resistant and three cefoxitin susceptible isolates (13.8%) were proven to produce AmpC ß-lactamase through AmpC disk test. Through the CLSI confirmatory test, 252 (82.9%) isolates were identified as ESBLs producers and the prevalence increased slightly when cloxacillin-containing Muller Hinton were used. Only three ESBLs positive organisms were positive for modified double disk synergy test. CONCLUSION: Distinguishing between AmpC ß-lactamase and ESBL-producing organisms has epidemiological significance as well as therapeutic importance. Moreover, AmpC ß-lactamase and ESBLs co-producing organisms can lead to false negative ESBL confirmatory test. Therefore, knowing the local prevalence can guide the clinician in navigating the treatment.


Escherichia coli , Klebsiella , beta-Lactamases , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/analysis , beta-Lactamases/biosynthesis , beta-Lactamases/metabolism , Escherichia coli/isolation & purification , Escherichia coli/enzymology , Escherichia coli/drug effects , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Hospitals, Teaching , Klebsiella/enzymology , Klebsiella/drug effects , Klebsiella/isolation & purification , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Microbial Sensitivity Tests , Prevalence , Cross Infection/epidemiology , Cross Infection/microbiology
12.
Front Public Health ; 12: 1332319, 2024.
Article En | MEDLINE | ID: mdl-38584932

Background: Enterotoxigenic E. coli (ETEC) is a leading cause of diarrheal morbidity and mortality in children, although the data on disease burden, epidemiology, and impact on health at the community level are limited. Methods: In a longitudinal birth cohort study of 345 children followed until 24 months of age in Lima, Peru, we measured ETEC burden in diarrheal and non-diarrheal samples using quantitative PCR (LT, STh, and STp toxin genes), studied epidemiology and measured anthropometry in children. Results: About 70% of children suffered from one or more ETEC diarrhea episodes. Overall, the ETEC incidence rate (IR) was 73 per 100 child-years. ETEC infections began early after birth causing 10% (8.9-11.1) ETEC-attributable diarrheal burden at the population level (PAF) in neonates and most of the infections (58%) were attributed to ST-ETEC [PAF 7.9% (1.9-13.5)] and LT + ST-ETEC (29%) of which all the episodes were associated with diarrhea. ETEC infections increased with age, peaking at 17% PAF (4.6-27.7%; p = 0.026) at 21 to 24 months. ST-ETEC was the most prevalent type (IR 32.1) with frequent serial infections in a child. The common colonization factors in ETEC diarrhea cases were CFA/I, CS12, CS21, CS3, and CS6, while in asymptomatic ETEC cases were CS12, CS6 and CS21. Only few (5.7%) children had repeated infections with the same combination of ETEC toxin(s) and CFs, suggested genotype-specific immunity from each infection. For an average ETEC diarrhea episode of 5 days, reductions of 0.060 weight-for-length z-score (0.007 to 0.114; p = 0.027) and 0.061 weight-for-age z-score (0.015 to 0.108; p = 0.009) were noted in the following 30 days. Conclusion: This study showed that ETEC is a significant pathogen in Peruvian children who experience serial infections with multiple age-specific pathotypes, resulting in transitory growth impairment.


Enterotoxigenic Escherichia coli , Escherichia coli Infections , Infant, Newborn , Humans , Enterotoxigenic Escherichia coli/genetics , Peru/epidemiology , Cohort Studies , Diarrhea/epidemiology , Enterotoxins/genetics , Escherichia coli Infections/epidemiology
13.
Emerg Infect Dis ; 30(5): 974-983, 2024 May.
Article En | MEDLINE | ID: mdl-38666612

We investigated links between antimicrobial resistance in community-onset bacteremia and 1-year bacteremia recurrence by using the clinical data warehouse of Europe's largest university hospital group in France. We included adult patients hospitalized with an incident community-onset Staphylococcus aureus, Escherichia coli, or Klebsiella spp. bacteremia during 2017-2019. We assessed risk factors of 1-year recurrence using Fine-Gray regression models. Of the 3,617 patients included, 291 (8.0%) had >1 recurrence episode. Third-generation cephalosporin (3GC)-resistance was significantly associated with increased recurrence risk after incident Klebsiella spp. (hazard ratio 3.91 [95% CI 2.32-6.59]) or E. coli (hazard ratio 2.35 [95% CI 1.50-3.68]) bacteremia. Methicillin resistance in S. aureus bacteremia had no effect on recurrence risk. Although several underlying conditions and infection sources increased recurrence risk, 3GC-resistant Klebsiella spp. was associated with the greatest increase. These results demonstrate a new facet to illness induced by 3GC-resistant Klebsiella spp. and E. coli in the community setting.


Anti-Bacterial Agents , Bacteremia , Community-Acquired Infections , Escherichia coli Infections , Escherichia coli , Klebsiella , Recurrence , Staphylococcal Infections , Staphylococcus aureus , Humans , Bacteremia/microbiology , Bacteremia/epidemiology , Klebsiella/drug effects , Klebsiella/genetics , Male , Risk Factors , Escherichia coli/drug effects , Female , Community-Acquired Infections/microbiology , Community-Acquired Infections/epidemiology , Middle Aged , Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Drug Resistance, Bacterial , Adult , France/epidemiology
14.
Vet Microbiol ; 293: 110072, 2024 Jun.
Article En | MEDLINE | ID: mdl-38640638

Bacterial resistance to ß-lactams is mainly attributed to CTX-M-type extended-spectrum ß-lactamases (ESBLs). However, the predominant sequence type (ST) of blaCTX-M-carrying Escherichia coli (blaCTX-M-Ec) in chickens, an important food animal, in China and its contribution to human ß-lactam resistance are not investigated. In this study, approximately 1808 chicken-derived strains collected from 10 provinces from 2012 to 2020 were screened for blaCTX-M-Ec, and 222 blaCTX-M-Ec were identified. Antimicrobial susceptibility tests, whole genome sequencing and conjugation experiment were performed. All quality-controlled 136 chicken-derived blaCTX-M-Ec and 1193 human-derived blaCTX-M-Ec genomes were downloaded from NCBI and EnteroBase to comprehensively analyze the prevalence of blaCTX-M-Ec in China. blaCTX-M-55 (153/358, 42.7% in chicken isolates; 312/1193, 26.2% in human isolates) and blaCTX-M-14 (92/358, 25.7% in chicken isolates; 450/1193, 37.7% in human isolates) were dominant in blaCTX-M-Ec. The STs of blaCTX-M-Ec were diverse and scattered, with ST155 (n = 21) and ST152 (n = 120) being the most abundant in chicken- and human-derived isolates, respectively. Few examples indicated that chicken- and human-derived blaCTX-M-Ec have 10 or less core genome single nucleotide polymorphisms (cgSNPs). Genetic environment analysis indicated that ISEcp1, IS26 and IS903B were closely associated with blaCTX-M transfer. The almost identical pc61-55 and pM-64-1161 indicated the possibility of plasmid-mediated transmission of blaCTX-M between humans and chickens. Although the genomes of most blaCTX-M-Ec isolated from chickens and humans were quite different, the prevalence and genetic environment of blaCTX-M variants in both hosts were convergent. CTX-M-mediated resistance is more likely to spread through horizontal gene transmission than bacterial clones.


Chickens , Escherichia coli Infections , Escherichia coli , Poultry Diseases , Whole Genome Sequencing , beta-Lactamases , Chickens/microbiology , Animals , beta-Lactamases/genetics , Escherichia coli/genetics , Escherichia coli/enzymology , Escherichia coli/drug effects , Escherichia coli/isolation & purification , China/epidemiology , Humans , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics
15.
Front Cell Infect Microbiol ; 14: 1351618, 2024.
Article En | MEDLINE | ID: mdl-38510968

Introduction: Urinary tract infections (UTIs) are one of the leading causes of multidrug-resistance (MDR) spread and infection-related deaths. Escherichia coli is by far the main causative agent. We conducted a prospective study on complicated urinary tract infections (cUTIs) i) to monitor the high-risk clones that could be compromising the therapeutic management and ii) to compare the cUTI etiology with uncomplicated infections (uUTIs) occurring in the same period and health area. Methods: 154 non-duplicated E. coli recovered from cUTIs in 2020 at the Hospital Universitario Central de Asturias (Spain) constituted the study collection. Results: Most cUTI isolates belonged to phylogroup B2 (72.1%) and met the uropathogenic (UPEC) status (69.5%) (≥3 of chuA, fyuA, vat, and yfcV genes). MDR was exhibited by 35.7% of the isolates, similarly to data observed in the uUTI collection. A significant difference observed in cUTI was the higher level of fluoroquinolone resistance (FQR) (47.4%), where the pandemic clonal groups B2-CC131 and B2-ST1193 (CH14-64) comprised 28% of the 154 E. coli, representing 52.1% of the FQR isolates. Other prevalent FQR clones were D-ST69 (CH35-27), D-ST405 (CH37-27), and B2-ST429 (CH40-20) (three isolates each). We uncovered an increased genetic and genomic diversity of the CC131: 10 different virotypes, 8 clonotypes (CH), and 2 STs. The presence of bla CTX-M-15 was determined in 12 (7.8%) isolates (all CC131), which showed 10 different core genome (cg)STs and 2 fimH types (fimH30 and fimH602) but the same set of chromosomal mutations conferring FQR (gyrA p.S83L, gyrA p.D87N, parC p.S80I, parC p.E84V, and parE p.I529L). In addition, the plasmidome analysis revealed 10 different IncF formulae in CC131 genomes. Conclusion: We proved here that non-lactose fermenting screening, together with the detection of O25b (rfbO25b), H4 (fliCH4), and H5 (fliCH5) genes, and phylogroup and clonotyping assignation, is a reasonable approach that can be easily implemented for the surveillance of emerging high-risk clones associated with FQR spread in cUTIs, such as the uncommonly reported O25b:H4-B2-ST9126-CC131 (CH1267-30). Since E. coli CC131 and ST1193 are also involved in the community uUTIs of this health area, interventions to eradicate these MDR clones, along with surveillance for other emerging ones, are essential for antibiotic use optimization programs.


Escherichia coli Infections , Urinary Tract Infections , Humans , Escherichia coli/genetics , Fluoroquinolones/pharmacology , Escherichia coli Infections/epidemiology , Prospective Studies , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Urinary Tract Infections/epidemiology
16.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(3): 339-346, 2024 Mar 10.
Article Zh | MEDLINE | ID: mdl-38514309

Objective: To understand the epidemiological characteristics of diarrheagenic Escherichia (E. ) coli infection in infectious diarrhea outpatients aged 15 years and older in Shanghai and provide evidence for the development of disease control strategies. Methods: Based on multistage systematic sampling, diarrhea surveillance was conducted in 22 sentinel hospitals in Shanghai, the information about cases' demographic, clinical, and epidemiological characteristics were collected. Stool samples were collected for the detection and typing of diarrheagenic E. coli by local centers for disease control and prevention. The positive rate of diarrheagenic E. coli in different populations and seasons from 2014 to 2021 were analyzed. Statistical analysis was conducted by using χ2 test. Results: In 15 185 diarrhea cases, 8.05% (1 222/15 185) were positive for diarrheagenic E. coli. The positive rate was higher in men (8.74%, 684/7 824) than in women (7.31%, 538/7 361). The positive rate was highest in age group 15-29 years (9.14%, 335/3 665) and the annual positive rate was highest in 2021 (10.21%, 83/813), the differences were all significant (P<0.05). In the 1 264 strains of diarrheagenic E. coli analyzed through PCR, enterotoxingenic E. coli was the most frequently identified pathogen (50.24%, 635/1 264), followed by enteroadhesive E. coli (27.93%, 353/1 264), and enteropathogenic E. coli (21.36%, 270/1 264). The positive rate of diarrheagenic E. coli showed obvious seasonality with peak in summer (13.92%, 774/5 562) (χ2=495.73, P<0.001). Conclusions: Diarrheagenic E. coli has become a prominent pathogen in infectious diarrhea cases in Shanghai, the disease can occur all the year round with incidence peak during summer and autumn. Predominant subtypes included enterotoxingenic E. coli, enteroadhesive E. coli and enteropathogenic E. coli. Targeted prevention and control strategies are needed for diarrheagenic E. coli-induced infectious diarrhea in different age groups, seasons and for different types of infections.


Dysentery , Enteropathogenic Escherichia coli , Escherichia coli Infections , Male , Female , Humans , Outpatients , China/epidemiology , Escherichia coli Infections/epidemiology , Diarrhea/epidemiology , Dysentery/epidemiology
17.
Comp Immunol Microbiol Infect Dis ; 107: 102149, 2024 Apr.
Article En | MEDLINE | ID: mdl-38442544

We aimed to determine the antimicrobial susceptibility profile of pathogenic Escherichia coli strains isolated from fecal samples of calves and buffalo calves (2008-2013), in Minas Gerais, Brazil, as well as the frequency of O157 gene and strains carrying extended-spectrum beta-lactamases (ESBL) and mobile colistin resistance (mcr) genes. E. coli strains (n=518) were tested for susceptibility against ten antimicrobials. Tetracycline was the antimicrobial with the highest resistance rate (382/518), followed by ampicillin (321/518), sulfamethoxazole/trimethoprim (312/518), chloramphenicol (192/518), gentamicin (126/518), ciprofloxacin (148/518), cefazolin (89/518), colistin (54/518) and cefoxitin (34/518). Multidrug resistance (MDR) was observed in 381/518 isolates. No strain harbored mcr or O157 genes, whereas 19/99 were ESBL positive. The most prevalent pathotype and phylogroup were STEC and B1, respectively. Age, EHEC pathotype and resistance to aminoglycoside and cephem were significantly associated with MDR in the multivariate model. Overall, E. coli strains showed high rates of resistance to penicillin, tetracyclines and folate inhibitors, in addition to an alarming rate of MDR and ESBL-producing strains.


Escherichia coli Infections , Escherichia coli Proteins , Animals , Escherichia coli , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial , Microbial Sensitivity Tests/veterinary , Escherichia coli Proteins/genetics , beta-Lactamases/genetics
18.
Diagn Microbiol Infect Dis ; 109(2): 116279, 2024 Jun.
Article En | MEDLINE | ID: mdl-38547800

BACKGROUND: Globally, millions of children die as a result of diarrhoea and/or antimicrobial resistant infections. Diarrhoeagenic Escherichia coli (DEC) are responsible for a substantial proportion of cases of diarrhoea in South Africa and sub-Saharan Africa. Effective treatments (including the use of antimicrobials) are therefore essential. METHODOLOGY: E. coli isolated from children under the age of five were subjected to antimicrobial susceptibility testing using the Vitek 2® compact automated system (bioMérieux Inc., France) and categorized as multidrug or extensively drug resistant (MDR or XDR). RESULTS: Almost all isolates (164/166, 98.8 %) were categorized as MDR with 4.9 % (9/166) categorized as XDR. The majority of isolates (153/166, 92.2 %) were also phenotypically classified as extended-spectrum ß-lactamase (ESBL) producers. More than half of these isolates (78/153, 51.0 %) were subjected to PCR for genes associated with ESBL production. More than half (45/78, 57.7 %) of the isolates tested were PCR positive for at least one ESBL gene or gene group and 11.5 % (9/78) were positive for two ESBL genes or gene groups. DISCUSSION: There is a need to strengthen antimicrobial resistance surveillance in South Africa and improve infection prevention and control measures. There is also a need to review the current South African Treatment Guidelines as outlined by the South African Essential Drugs Programme.


Anti-Bacterial Agents , Diarrhea , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Microbial Sensitivity Tests , beta-Lactamases , Humans , South Africa/epidemiology , Diarrhea/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Infant , Child, Preschool , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Male , Female , Infant, Newborn
19.
mBio ; 15(4): e0342223, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38488359

Diarrheagenic Escherichia coli, collectively known as DEC, is a leading cause of diarrhea, particularly in children in low- and middle-income countries. Diagnosing infections caused by different DEC pathotypes traditionally relies on the cultivation and identification of virulence genes, a resource-intensive and error-prone process. Here, we compared culture-based DEC identification with shotgun metagenomic sequencing of whole stool using 35 randomly drawn samples from a cohort of diarrhea-afflicted patients. Metagenomic sequencing detected the cultured isolates in 97% of samples, revealing, overall, reliable detection by this approach. Genome binning yielded high-quality E. coli metagenome-assembled genomes (MAGs) for 13 samples, and we observed that the MAG did not carry the diagnostic DEC virulence genes of the corresponding isolate in 60% of these samples. Specifically, two distinct scenarios were observed: diffusely adherent E. coli (DAEC) isolates without corresponding DAEC MAGs appeared to be relatively rare members of the microbiome, which was further corroborated by quantitative PCR (qPCR), and thus unlikely to represent the etiological agent in 3 of the 13 samples (~23%). In contrast, ETEC virulence genes were located on plasmids and largely escaped binning in associated MAGs despite being prevalent in the sample (5/13 samples or ~38%), revealing limitations of the metagenomic approach. These results provide important insights for diagnosing DEC infections and demonstrate how metagenomic methods can complement isolation efforts and PCR for pathogen identification and population abundance. IMPORTANCE: Diagnosing enteric infections based on traditional methods involving isolation and PCR can be erroneous due to isolation and other biases, e.g., the most abundant pathogen may not be recovered on isolation media. By employing shotgun metagenomics together with traditional methods on the same stool samples, we show that mixed infections caused by multiple pathogens are much more frequent than traditional methods indicate in the case of acute diarrhea. Further, in at least 8.5% of the total samples examined, the metagenomic approach reliably identified a different pathogen than the traditional approach. Therefore, our results provide a methodology to complement existing methods for enteric infection diagnostics with cutting-edge, culture-independent metagenomic techniques, and highlight the strengths and limitations of each approach.


Escherichia coli Infections , Escherichia coli , Child , Humans , Escherichia coli/genetics , Metagenome , Escherichia coli Infections/epidemiology , Diarrhea/diagnosis , Diarrhea/epidemiology , Virulence/genetics
...